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RATIONAL COOPERATION IN THE FINITELY-REPEATED

PRISONERS' DILEMMA

by

David M. Kreps, Paul Milgrom, John Roberts and Robert Wilson

The purpose of this note is to demonstrate how reputation effects

due to informational asymmetries can generate cooperative behavior in

finitely-repeated versions of the classic prisoners' dilemma. The

methods employed are those developed in our work on the chain-store

paradox (Kreps and Wilson 119811, Milgrom and Roberts 119811). We refer

the reader to those papers for motivation, formal definitions, and

interpretation.
/4'T he basic game that we consider consists of N repetitions of the

following two person, bimatrix, stage game:

COL
FINK COOPERATE

FINK 0,0 a,b

ROW
COOPERATE b,a 1,1

We require a > 1, b < 0, and a + b < 2.L / At each stage, each of the

two players, ROW and COL, recalls his previous actions and is informed

about those of his opponent. The players move simultaneously at each
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stage. Payoffs in the overall game are the (undiscounted) sums of the

stage payoffs.

This game has a unique Nash equilibrium path, which involves each

player choosing to fink at every stage. The logic is similar to

Selten's backwards induction in the chain-store game (although the

argument there shows the uniqueness of the perfect equilibrium). In the

final stage (which we call stage 1), finking strongly dominates cooper-

ating, and so must ensue. Then, in the penultimate stage, finking does

better than cooperating in terms of the current stage, while the choice

at this stage cannot affect the outcome in stage 1. Thus finking will

again be adopted by both players. And so on, for any finite N2 / This

outcome is clearly and dramatically inefficient.

This uniqueness result is disturbing in light of experiments with

this game, of which there have been a very large number. (See Axelrod

119821 and Smale 119801 for references.) A common pattern in these

experiments is that, at least for some time, both players cooperate and,

in the process, end up with payoffs that are strictly greater than they

would obtain under equilibrium play. The issue then is whether this

puzzle can be resolved in the context of rational, self-interested

behavior. The approach we adopt is to admit a "smll amount" of the

"right kind" of incomplete information.

In fact, we are able to show that certain kinds of informational

asymmetries mast yield a significant measure of cooperation in equi-

librium, and that other plausible asymmetries may produce cooperation

as well. Throughout, the equilibrium concept is that of sequential
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equilibrium (Kreps and Wilson 119811). Sequential equilibrium in a game

of incomplete information requires that the action taken by any player

at any point in the game tree must be part of an optimal strategy from

that point forward, given his beliefs about the evolution of the game to

this point (which must, to the extent possible, be consistent with

Bayesian updating on the hypothesis that the equilibrium strategies have

been used to date) and given that future play will be governed by the

equilibrium strategies. The various models we use parallel those in

Kreps and Wilson 119811 and Milgrom and Roberts [19811. Each involves

some element of uncertainty in the mind of (at least) one player about

the other, and they can all be viewed in terms of a lack of common

knowledge (between ROW and COL) that both are rational players playing

precisely the game specified above. The possibilities for more detailed

analysis of this model and its application in economic, political, and

military contexts appear to be very rich. Various combinations of the

authors hope to report on such work in the future.

Model 1: ROW might play Tit-for-Tat.

The first approach we consider supposes that, when the game

begins, one of the players (say, COL) is not absolutely certain that the

other (ROW) will play "rationally' according to the payoffs specified

above. Specifically, COL assigns probability 1 - 6, to the possibility

of a "rational" opponent, and he allows a (very small) chance, 8, that

ROW has available only the Tit-for-Tat strategy33- The Tit-for-Tat

strategy requires the player using it to begin by cooperating and then

to cooperate at stage n - 1 if and only if his opponent cooperated at
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the preceding stage, n. It is worth noting that this strikingly simple

and quite natural strategy emerged as the winner in Axelrod's prisoners'

dilemma tournament (19821.

To present a sequential equilibrium in full detail for t;is game

is difficult. There is no question that such equilibria exist: See

Kreps and Wilson (119811, Proposition i). But the "end play" of such

equilibria are very complex. So we shall be content here to prove that

in any sequential equilibrium, the number of stages where one player or

the other finks is bounded above by a constant depending on 6 but

independent of N. Further, if we restrict attention to sequential

equilibria that are not Pareto-dominated by any other sequential equi-

libria, then there is cooperation in all but the last "few" stages.

We prove these statements in a number of steps. The statement of

each step except the last should be prefaced: In every sequential

equilibrium...

Step 1: ...if it becomes common knovledge4/ before some stage

that ROW is rational, then both ROW and COL fink at this and every

succeeding stage, and their payoffs from the remainder of the game are

zero.

The proof is by induction on the number of stages remaining. It

is apparent if there is only one stage remaining. Suppose that it is

true if there are n - 1 or fever stages to go. Then with n stages

remaining, the rational ROW mst foresee that his present choice of

action cannot influence the future course of the game, since it will

remain common knowledge that he is rational when stage n - 1 arrives.

.- I



Therefore he will maximize his immediate payoff, which means finking.

Similarly, COL anticipates that no matter what he does at this stage,

finking will occur at all later stages. In this round, finking is

strictly better, so COL finks as well. Since both sides fink, their

payoffs are each zero, and the induction is complete.

Step 2: ...if COL finks at stage n + 1, then ROW finks at stage.

If ROW did cooperate in these circumstances, it would become

common knowledge that he was rational. (The "Tit-for-Tat" ROW does not

have this action available.) Thus cooperation nets zero in the continu-

ation game. But finking can do no worse than zero in the continuation

game and it is strictly dominant in the stage game. Thus finking does

strictly better overall. This means that ROW nust fink with probability

one.

Step 3: ...starting from any point in the game tree (i) where COL

assesses probability q that ROW is the Tit-for-Tat player, (ii) where

there are n stages to go, and (iii) where COL cooperated at the prev-

ious stage, the expected payoff to COL for the remainder of the game is

at least qn + b.

To show this, consider the strategy for COL of cooperating until

the next time that ROW finks, and then finking ever after. Against the

Tit-for-Tat player, this yields a payoff of n. Against the rational

ROW, it yields no worse than b. Thus it yields an expected payoff that

is at least qn + (1 - q)b > qn + b, and any equilibrium strategy must

do at least as well.

L



Step 4: ... starting from any point in the game tree (i) where COL

assesses probability q that ROW is the Tit-for-Tat player, (ii) where

there are n stages to go, and (iii) where COL f inked on the previous

stage, the expected payoff to COL for the reminder of the game is at

least q(n - 1) + 2b.

Because ROW is sure to fink (see step 2), COL knows that his

assessment in the subsequent stage will again be q. So by cooperating

at this stage, COL gets b immediately and at least q(n - 1) + b in

the continuation game. His overall expected payoff can be no worse than

the sum of these, or q(n - 1) + 2b.

Step 5: ...starting at a point in the game tree (i) where COL

assesses probability q that ROW is the Tit-for-Tat player, and (ii)

where there are n stages to go, the expected payoff to the rational

ROW player is not less than q(n - 1) + 3b - a.

Rote first that COL will do no worse if the rational ROW pays Tit-

for-Tat than if the rational ROW plays his equilibrium strategy. This

is easily verified inductively, using steps 1 and 2. Thus the bounds

obtained in steps 3 and 4 apply equally well if the rational ROW were to

play Tit-for-Tat. And by playing Tit-for-Tat, the rational ROW nets

within b - a of whatever COL gets, path by path. This gives us the

bound on RCW's payoff stated above.

Step 6: ...If COL assesses probability q that ROW is the Tit-

for-Tat player, and if there are more than (2a - 4b + 2q) /q stages

left to go, then ROW plays the Tit-for-Tat strategy with probability
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one. Thus along the equilibrium path, until the first stage less than

(2a - 4b + 2)/8, COL infers nothing from the observed behavior of Raw,

and COL's assessment that ROW is the Tit-for-Tat player remains at 6.

In light of step 2, all that is needed here is to show that ROW

cooperates if COL has just cooperated in these circumstances. (The

second part of the statement follows trivially from the first.) If ROW

were to fink, it would become common knowledge that ROW is rational.

Thus the total payoff from finking cannot exceed a - ROW gets at

most a immediately (if COL cooperates) and then zero in the continua-

tion game (by step 1). By cooperating, ROW will do no worse than b in

this round (if COL finks) and, by step 5, q(n - 2) + 3b - a in the

continuation game, (since q does not decrease) where n is the number

of stages remaining. If n exceeds (2a - 4b + 2q)(q, then cooperating

is strictly better.

Step 7: ...the total number of stages where one side or the other

finks is bounded above by

?-a -4b +26 2a. . mI+rin -b,l) ]

As seen in step 6, ROW plays Tit-for-Tat until stage

(2a 4b + 28)/6. If COL cooperates until ROW finks and then finks

thereafter, his payoff must be at least N - (2a - 4b + 28)/6 + b. If

COL finks before this date, then in that stage he gets a. If he then

returns m stages later to cooperating, he gets b in the stage where

he cooperates and zero in between. Thus he gives up 1 + m - a - b in
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this circumstance. A string of finks costs him 1 + (I - (a + b))/m

per round in comparison to cooperating. Thus, each time COL

finks it costs him at least min (2 - a - b,1). If he finks k

times prior to stage (2a - 4b + 28)/8, his payoff cannot exceed

N - k * mn (2 - a - b,l). These two bounds on COL's payoffs yield

k < (2a - 5b + 26)1(6 e min {2 - a - b,l}). Each such act of finking

by COL provokes a Tit-for-Tat response from ROW in the next round, so

there are at most 2k rounds before stage (2a - kb + 26)/6 when

finking occurs. Thus the maximum number of rounds with finking is that

given above.

Step 8: In any sequential equilibrium that is not Pareto-domi-

nated by some other sequential equilibrium, there is no finking along

the equilibrium path when more than . + (2a - 4b + 26)/6 stages

remain.

For any equilibrium where there is finking before this date, a

Pareto-superior equilibrium consists of not having that finking, and

then continuing to play the game as if it had not occurred.

Note that these bounds are not tight: If 6 s 1 they yield

n - 10 step 8 for a - 1.5 and b a -1, yet in this circumstance one

should see finking only in the last period. The looseness of these

bounds suggests the need for further work.

The Tit-for-Tat theme can also be developed so an to emphasise

further the role of lack of comon knowledge. This development is in

the spirit of Milgrom and Roberts (11911, Appendix B).

0



Suppose that there are three states of the world. In state 1, ROW

is the Tit-for-Tat player; in stages 2 and 3 he is rational. Raw learns

whether he is Tit-for-Tat or not--his information partition (at the

outset) is f1), 12,3). COL, on the other hand, is given the information

partition {1,21, {3). In state 3 he knows whether ROW is the Tit-for-

Tat player; in state 2 he does not. Suppose that state 3 prevails with

very high probability. Then with very high probability, ROW is not Tit-

for-Tat, and COL knows that ROW is not Tit-for-Tat. But ROW isn't sure

that COL knows this, and one can show that the qualitative results

proved for Model 1 hold here. ROW will play Tit-for-Tat until near the

end of the game, hoping that COL will be "deceived." And COL will

pretend to be "deceived" even if he is not, as this improves his lot as

well.

Or consider a four-state case. In state 1 ROW is the Tit-for-Tat

player--in states 2, 3 and 4 he is not. ROW is endowed with the infor-

mation partition (11, {2,31, {41; COL with (1,21, f3,4). State 4 pre-

vails with probability close to one. Then with probability close to

one, ROW is not Tit-for-Tat, COL knows that this is so, ROW knows that

COL knows this, but COL is not sure that ROW knows that COL knows. Once

more the qualitative results for the original model hold up--ROW tries

to "deceive" COL, knowing full well that COL will not be deceived but

will act as if he is, and COL will do this in the hope that ROW may be

unaware that COL is not being deceived. One could go on like this

forever: The general structure is that ROW's information partition

should involve sets (1), (2,3),..., (2m,2m + 1),... and COL's should

______
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involve {1,2},(3,ih,...,(2m + 1,2m + 21, (with termination eventualil .

The point is simply that so long as it is not common knowledge that F.OW

is not Tit-for-Tat, cooperation until near the end of the game will be

rational.

Model 2: Two-sided Uncertainty about the Stage Payoffs.

In Model 1, COL entertains a hypothesis about ROW's behavior that

cannot be generated if ROW is rational and has some stage game payoffs

that he sums to arrive at his overall payoff. That is, COL's hypothe-

sis, in terms of ROW's "true" utility function, necessarily involves

payoffs for ROW that cut across stages. We might then wonder: Can

long-run cooperation be attained if the only alternative hyotheses that

are allowed (besides the hypothesis that the player is rational with the

given stage payoffs) involve changes in the stage game payoffs? (This

approach is used in Kreps and Wilson [19811.) The answer is a qualified

yes.

Suppose that each player originally assesses a small probability

that his opponent "enjoys" cooperation when it is met by cooperation.

Given our zero-one normalization, we model this by assuming that COL

assigns a small probability 8 > 0 that a < 1 for ROW, and ROW enter-

tains a similar hypothesis about COL. We can then produce a sequential

equilibrium wherein each side cooperates until the last few stages of

the game, although again the end-game play is rather complex. In this

equilibrium, if either side ever fails to cooperate, then the other side

takes this as a sure sign that the defector has stage game payoffs with

a > 1, and the noncooperative equilibrium ensues. As the details of



this equilibrium are quite complex, we refrain from giving them here.

Note, however, that if we move directly to a continuous-time formulation

of this game, as in Kreps and Wilson (119811, Section 4), then one

equilibrium has cooperation throughout.

There are two qualifications to be made. First, two-sided uncer-

tainty is required. If ROW, say, is uncertain about COL's stage pay-

offs, but it is common knowledge that a < I for ROW, then the only

sequential equilibrium has finking thoughout. (This is true for any

"incomplete information" about one player's stage payoffs.) The second

qualification, and certainly the more important, is that this game

admits sequential equilibria in which long-run cooperation does not

ensue, unlike the game with a Tit-for-Tat possibility. This is true

even if we make a "plausibility" restriction on beliefs off the equilib-

rium path in the spirit of Section 3 of Kreps and Wilson 119811. Coop-

eration heFe requires a "boot-strapping" cooperation: Even if each side

is certain that the other has a < 1, cooperation ensues only if each

side hypothesizes that the other side will cooperate. (This is a fancy

way of saying: If both sides have payoffs with a < 1, then there are

two Nash equilibria in the stage game.) One might justify the coopera-

tive equilibrium on "efficiency" grounds, but one cannot guarantee that

cooperation will prevail in every sequential equilibrium.
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Footnotes

1/ If a + b > 2, then the strategy of both cooperating at each
stage is Pareto-dominated by alternating between fink-cooperate
and cooperate-fink. Much of our analysis can be adapted to
handle this case.

2/ Note the sharp contrast with the infinitely-repeated case, where
any average payoff vector in the intersection of the positive
orthant and the convex hull of the four possible stage payoff
vectors can be achieved through a perfect equilibrium. Note also
that in the finitely-repeated case, Nash equilibrium behavior off
the equilibrium path may involve some cooperation. But finking
is required everywhere in any perfect equilibrium.

3/ An alternative way to model this is to assume that ROW has avail-
able all the strategies above, but that with probability
6, ROW's payoffs are not as above but rather make playing Tit-
for-Tat strongly dominant. The results given below can be proved
for this alternative model, although the simple "common knowl-
edge" arguments that we use are no longer available, and slightly
more complex arguments are required. An advantage of this alter-
native model is that it eases interpretation of the probability
assessed by COL that ROW is the Tit-for-Tat player as ROW's
"1reputation."

1__/ It is common knowledge that ROW is rational if both players know
this, both know that both know this, ad infinitum. More
formally, an event E is common knowledge between two individ-
uals at a state w E 0 if there is some A in the finest common
coarsening (meet) of their information partitions with
w E A C E. The crucial role of common knowledge will be illus-

trated shortly.
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